Experiments and analyses of upstream-advancing solitary waves generated by moving disturbances

Author:

Lee Seung-Joon,Yates George T.,Wu T. Yaotsu

Abstract

In this joint theoretical, numerical and experimental study, we investigate the phenomenon of forced generation of nonlinear waves by disturbances moving steadily with a transcritical velocity through a layer of shallow water. The plane motion considered here is modelled by the generalized Boussinesq equations and the forced Korteweg-de Vries (fKdV) equation, both of which admit two types of forcing agencies in the form of an external surface pressure and a bottom topography. Numerical results are obtained using both theoretical models for the two types of forcings. These results illustrate that within a transcritical speed range, a succession of solitary waves are generated, periodically and indefinitely, to form a procession advancing upstream of the disturbance, while a train of weakly nonlinear and weakly dispersive waves develops downstream of an ever elongating stretch of a uniformly depressed water surface immediately behind the disturbance. This is a beautiful example showing that the response of a dynamic system to steady forcing need not asymptotically tend to a steady state, but can be conspicuously periodic, after an impulsive start, when the system is being forced at resonance.A series of laboratory experiments was conducted with a cambered bottom topography impulsively started from rest to a constant transcritical velocityU, the corresponding depth Froude numberF=U/(gh0)½(gbeing the gravitational constant andh0the original uniform water depth) being nearly the critical value of unity. For the two types of forcing, the generalized Boussinesq model indicates that the surface pressure can be more effective in generating the precursor solitary waves than the submerged topography of the same normalized spatial distribution. However, according to the fKdV model, these two types of forcing are entirely equivalent. Besides these and some other rather refined differences, a broad agreement is found between theory and experiment, both in respect of the amplitudes and phases of the waves generated, when the speed is nearly critical (0.9 <F< 1.1) and when the forcing is sufficiently weak (the topography-height to water-depth ratio less than 0.15) to avoid breaking. Experimentally, wave breaking was observed to occur in the precursor solitary waves at low supercritical speeds (about 1.1 <F< 1.2) and in the first few trailing waves at high subcritical speeds (about 0.8 <F< 0.9), when sufficiently forced. For still lower subcritical speeds, the trailing waves behaved more like sinusoidal waves as found in the classical case and the forward-running solitary waves, while still experimentally discernible and numerically predicted for 0.6 >F> 0.2, finally disappear atF≈ 0.2. In the other direction, as the Froude number is increased beyondF≈ 1.2, the precursor soliton phenomenon was found also to evanesce as no finite-amplitude solitary waves can outrun, nor can any two-dimensional waves continue to follow, the rapidly moving disturbance. In this supercritical range and for asymptotically large times, all the effects remain only local to the disturbance. Thus, the criterion of the fascinating phenomenon of the generation of precursor solitons is ascertained.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference36 articles.

1. Zhu, J. , Wu, T. Y. & Yates, G. T. ,1986 Generation of internal runaway solitons by moving disturbances. In Proc. 16th Symp. on Naval Hydrodynamics (ed. W. C. Webster ), pp.186–198.Washington, DC:National Academy Press.

2. Ertekin, R. C. , Webster, W. C. & Wehausen, J. V. ,1984 Ship-generated solitons. In Proc. 15th Symp. on Naval Hydrodynamics , pp.347–364.Washington, DC:National Academy Press.

3. Lamb, H. :1932 Hydrodynamics .Cambridge University Press.

4. Zabusky, N. J. & Kruskal, M. D. ,1965 Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states.Phys. Rev. Lett. 15,240–243.

5. Schlichting, H. :1979 Boundary Layer Theory ,7th edn.McGraw-Hill.

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3