Enhanced sedimentation in settling tanks with inclined walls

Author:

Acrivos Andreas,Herbolzheimer Eric

Abstract

Using the principles of continuum mechanics, a theory is developed for describing quantitatively the sedimentation of small particles in vessels having walls that are inclined to the vertical. The theory assumes that the flow is laminar and that the particle Reynolds number is small, but c0, the concentration in the suspension, and the vessel geometry are left arbitrary. The settling rate S is shown to depend upon two dimensionless groups, in addition to the vessel geometry: a sedimentation Reynolds number R, typically O(1)-O(10); and Λ, the ratio of a sedimentation Grashof number to R, which is typically very large. By means of an asymptotic analysis it is then concluded that, as Λ → ∞ and for a given geometry, S can be predicted from the well-known Ponder-Nakamura-Kuroda formula which was obtained using only kinematic arguments. The present theory also gives an expression for the thickness of the clear-fluid slit that forms underneath the downward-facing segment of the vessel walls, as well as for the velocity profile both in this slit and in the adjoining suspension.The sedimentation rate and thickness of the clear-fluid slit were also measured in a vessel consisting of two parallel plates under the following set of conditions: c0 ≤ 0·1, RO(1), O(10)5 ≤ Λ ≤ O(107) and 0° ≤ α ≤ 50°, where α is the angle of inclination. Excellent agreement was obtained with the theoretical predictions. This suggests that the deviations from the Ponder-Nakamura-Kuroda formula reported in the literature are probably due to a flow instability which causes the particles to resuspend and thereby reduces the efficiency of the process.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 186 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3