Nonlinear reflection of grazing acoustic shock waves: unsteady transition from von Neumann to Mach to Snell–Descartes reflections

Author:

BASKAR SAMBANDAM,COULOUVRAT FRANÇOIS,MARCHIANO RÉEGIS

Abstract

We study the reflection of acoustic shock waves grazing at a small angle over a rigid surface. Depending on the incidence angle and the Mach number, the reflection patterns are mainly categorized into two types, namely regular reflection and irregular reflection. In the present work, using the nonlinear KZ equation, this reflection problem is investigated for extremely weak shocks as encountered in acoustics. A critical parameter, defined as the ratio of the sine of the incidence angle and the square root of the acoustic Mach number, is introduced in a natural way. For step shocks, we recover the self-similar (pseudo-steady) nature of the reflection, which is well known from von Neumann's work. Four types of reflection as a function of the critical parameter can be categorized. Thus, we describe the continuous but nonlinear and non-monotonic transition from linear reflection (according to the Snell–Descartes laws) to the weak von-Neumann-type reflection observed for almost perfectly grazing incidence. This last regime is a new, one-shock regime, in contrast with the other, already known, two-shock (regular reflection) or three-shock (von Neumann-type reflection) regimes. Hence, the transition also resolves another paradox on acoustic shock waves addressed by von Neumann in his classical paper. However, step shocks are quite unrealistic in acoustics. Therefore, we investigate the generalization of this transition for N-waves or periodic sawtooth waves, which are more appropriate for acoustics. Our results show an unsteady reflection effect necessarily associated with the energy decay of the incident wave. This effect is the counterpart of step-shock propagation over a concave surface. For a given value of the critical parameter, all the patterns categorized for the step shock may successively appear when the shock is propagating along the surface, starting from weak von-Neumann-type reflection, then gradually turning to von Neumann reflection and finally evolving into nonlinear regular reflection. This last one will asymptotically result in linear regular reflection (Snell–Descartes). The transition back to regular reflection is one of two types, depending on whether a secondary reflected shock is observed. The latter case, here described for the first time, appears to be related to the non-constant state behind the incident shock, which prevents secondary reflection.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3