Author:
IKEDA TOMOAKI,DURBIN PAUL A.
Abstract
In this study, we performed simulations of turbulent flow over rectangular ribs transversely mounted on one side of a plane in a channel, with the other side being smooth. The separation between ribs is large enough to avoid forming stable vortices in the spacing, which exhibitsk-type, or sand-grain roughness. The Reynolds numberReτof our representative direct numerical simulation case is 460 based on the smooth-wall friction velocity and the channel half-width. The roughness heighthis estimated as 110 wall units based on the rough-wall friction velocity. The velocity profile and kinetic energy budget verify the presence of an equilibrium, logarithmic layer aty≳2h. In the roughness sublayer, however, a significant turbulent energy flux was observed. A high-energy region is formed by the irregular motions just above the roughness. Visualizations of vortical streaks, disrupted in all three directions in the roughness sublayer, indicate that the three-dimensional flow structure of sand-grain roughness is replicated by the two-dimensional roughness, and that this vortical structure is responsible for the high energy production. The difference in turbulence structure between smooth- and rough-wall layers can also be seen in other flow properties, such as anisotropy and turbulence length scales.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
119 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献