Effects of heat release on the large-scale structure in turbulent mixing layers

Author:

Mcmurtry P. A.,Riley J. J.,Metcalfe R. W.

Abstract

The effects of chemical heat release on the large-scale structure in a chemically reacting, turbulent mixing layer are investigated using direct numerical simulations. Three-dimensional, time-dependent simulations are performed for a binary, single-step chemical reaction occurring across a temporally developing turbulent mixing layer. It is found that moderate heat release slows the development of the large-scale structures and shifts their wavelengths to larger scales. The resulting entrainment of reactants is reduced, decreasing the overall chemical product formation rate. The simulation results are interpreted in terms of turbulence energetics, vorticity dynamics, and stability theory. The baroclinic torque and thermal expansion in the mixing layer produce changes in the flame vortex structure that result in more diffuse vortices than in the constant-density case, resulting in lower rotation rates of the large-scale structures. Previously unexplained anomalies observed in the mean velocity profiles of reacting jets and mixing layers are shown to result from vorticity generation by baroclinic torques.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3