The inviscid nonlinear instability of parallel shear flows

Author:

Robinson J. L.

Abstract

In this paper we assume the existence of a nonlinear boundary layer centred on the critical point, and explore its effect on the development of unstable parallel shear flows. A velocity matching condition derived in a qualitative discussion suggests a growth of harmonics which differs from that predicted by previous theories; however, the prediction is in excellent agreement with experimental data. A hyperbolic-tangent velocity profile, subjected to perturbations with wavenumbers and frequencies close to marginal values, is then chosen as a mathematical model of the nonlinear development, both temporal and spatial instability growth being considered.A singularity in the analysis which has been treated in previous theories by the introduction of viscosity is dealt with in the present work by the introduction of a growth boundary layer. The asymptotics are non-uniform and the time-dependent solution does not resemble the steady viscous solutions, even as the growth rate tends to zero. The theory suggests that the instability will develop as a series of temporally growing spiral vortices, a description differing from that of a cat's-eye pattern predicted by existing theories, but in accord with experimental and field observations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference15 articles.

1. Stuart, J. T. & Woodgate, L. 1955 Experimental determination of the aerodynamical damping on a vibrating circular cylinder.Phil. Mug. 46,40–46.

2. Kaplwn, S. 1957 Low Reynolds numbers flow past a circular cylinder.J. Math. Mech. 6,595–603.

3. Watson, G. N. 1962 A Tmmtise of the Theory of Bessd Fmctions.Cambridge University Press.

4. Taylor, G. I. 1952 Analysis of the swimming of long end narrow animals.Pmc. Roy. Soc. A214,168–183.

5. Lighthill, M. J. 1960b Note on the swimming of slender fish.J. Fluid Mech. 9,305–317.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3