On the behaviour of a fluid-loaded cylindrical shell with mean flow

Author:

PEAKE N.

Abstract

The unsteady behaviour of an infinitely long fluid-loaded elastic plate which is driven by a single-frequency point-force excitation in the presence of mean flow is known to exhibit a number of unexpected features, including absolute instability when the normalized flow speed, U, lies above some critical speed U0, and certain unusual propagation effects for U<U0. In the latter respect Crighton & Oswell (1991) have demonstrated most significantly that for a particular frequency range there exists an anomalous neutral (negative energy) mode which has group velocity pointing towards the driver, in violation of the usual radiation condition of outgoing waves at infinity. They show that the rate of working of the driver can be negative, due to the presence of other negative-energy waves, and can also become infinite at a critical frequency corresponding to a real modal coalescence. In this paper we attempt to extend these results by including, as is usually the case in a practical situation, plate curvature in the transverse direction, by considering a fluid-loaded cylinder with axial mean flow. In the limit of infinite normalized cylinder radius, a, Crighton & Oswell's results are regained, but for finite a very significant modifications are found. In particular, we demonstrate that the additional stiffness introduced by the curvature typically moves the absolute-instability boundary to a much higher flow speed than for the flat-plate case. Below this boundary we show that Crighton & Oswell's anomalous neutral mode can only occur for a>a1(U), but in practical situations it turns out that a1(U) is exceedingly large, and indeed seems much larger than radii of curvature achievable in engineering practice. Other negative-energy waves are seen to exist down to a smaller, but still very large, critical radius a2(U), while the existence of a real modal coalescence point, leading to a divergence in the driver admittance, occurs down to a slightly smaller critical radius a3(U). The transition through these various flow regimes as U and a vary is fully described by numerical investigation of the dispersion relation and by asymptotic analysis in the (realistic) limit of small U. The inclusion of plate dissipation is also considered, and, in common with Abrahams & Wickham (1994) for the flat plate, we show how the flow then becomes absolutely unstable at all flow speeds provided that a>a2(U).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3