The radiatively driven discrete acoustic wave

Author:

Cogley A. C.

Abstract

A complete and detailed study of a radiatively driven plane acoustic wave in a non-grey radiating and absorbing gas is carried out on the assumption of local molecular equilibrium. Specifically, the response of the gas in a semi-infinite space to a step input of radiation from a stationary black wall is investigated. The problem is physically interesting because radiative heat addition is the only driving mechanism, and this mechanism is unique and fundamental to the field of radiative gas dynamics. The solution shows that the heat addition gives rise initially to a compression-expansion wave in the gas, with the wave front controlled by radiation. This wave-front disturbance, though caused initially by the direct effect of radiative transfer, eventually outruns the region of appreciable heating near the wall and becomes a modified-classical disturbance that propagates away from the wall at the isentropic speed of sound. The radiative heat addition continues directly to affect the gas near the wall and in this manner drives the modified-classical wave indirectly by causing the formation of an ‘effective gas piston’. The solution thus exhibits a linearized phenomenology corresponding to that observed in the non-linear leading wave associated with the nuclear fireball.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference12 articles.

1. Solan, A. & Cohen, I. M. 1967b Rayleigh problem in a radiating compressible gas. Part 2. Plate mach number large Phys. Fluids,10,257.

2. Solan, A. & Cohen, I. M. 1967a Rayleigh problem in a radiating compressible gas. Part 1. Plate mach number finite Phys. Fluids,10,108.

3. Long, H. R. & Vincenti, W. G. 1967 Radiation-driven acoustic waves in a confined gas Phys. Fluids,10,1365.

4. Brode, H. L. 1964 Fireball phenomenology. RAND Corp ., Report P-3026.

5. Baldwin, B. S. 1962 The propagation of plane acoustic waves in a radiating gas. NASA TR R-138.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3