Flow and instability of thin films on a cylinder and sphere

Author:

TAKAGI DAISUKE,HUPPERT HERBERT E.

Abstract

We investigate the dynamics of thin films driven by gravity on the outer surface of a cylinder and sphere. The surface is rigid, stationary and the axis of the cylinder is horizontal. An instantaneous release of a constant volume of fluid at the top of the cylinder or sphere results initially in a two-dimensional or axisymmetric current respectively. The resultant flow of a thin film of fluid is described using lubrication theory when gravity and viscous forces govern the dynamics. We show that the thickness of the flow remains uniform in space and decreases in time like t−1/2 near the top of both the cylinder and the sphere. Analytic solutions for the extent of the flow agree well with our experiments until the advancing front splits into a series of rivulets. We discuss scalings of the flow at the onset of the instability as a function of the Bond number, which characterizes the relative importance of gravity and surface tension. The experiments, conducted within an intermediate range of Bond numbers, suggest that the advancing front becomes unstable after it has propagated a critical distance, which depends primarily and monotonically on the volume of fluid and not on the viscosity of fluid. Releasing a sufficiently large volume of fluid ensures that rivulets do not develop on either a cylinder or sphere.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3