Author:
HEIL MATTHIAS,BOYLE JONATHAN
Abstract
We employ numerical simulations to explore the development of flow-induced self-excited oscillations in three-dimensional collapsible tubes which are subject to boundary conditions (flow rate prescribed at the outflow boundary) that encourage the development of high-frequency oscillations via an instability mechanism originally proposed by Jensen & Heil (J. Fluid Mech., vol. 481, 2003, p. 235). The simulations show that self-excited oscillations tend to arise preferentially from steady equilibrium configurations in which the tube is buckled non-axisymmetrically. We follow the growing oscillations into the large-amplitude regime and show that short tubes tend to approach an approximately axisymmetric equilibrium configuration in which the oscillations decay, whereas sufficiently long tubes develop sustained large-amplitude limit-cycle oscillations. The period of the oscillations and the critical Reynolds number beyond which their amplitude grows are found to be in good agreement with theoretical scaling estimates.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献