Wake formation around islands in oscillatory laminar shallow-water flows. Part 1. Experimental investigation

Author:

LLOYD PETER M.,STANSBY PETER K.,CHEN DAOYI

Abstract

An experimental investigation of oscillatory shallow-water flow around islands has been undertaken to determine the dependence of wake formation on Keulegan–Carpenter number, KC = UoT/D, and stability parameter, S = cfD/h, where Uo is amplitude of velocity oscillation, T is oscillation period, D is a representative island diameter, cf is friction coefficient and h is water depth. Two geometries are investigated: a vertical cylinder and a conical island with a small side slope of 8°. Existing experimental results for current flow around the same geometries have shown the influence of the stability parameter. Predominantly laminar flows are investigated and the flows are subcritical.Four modes of wake formation have been identified for both geometries: one with symmetric attached counter-rotating vortices only forming in each half-cycle, one with vortex pairs forming symmetrically in addition in each half-cycle, one with vortex pairs forming with some asymmetry and one with complex vortex shedding. The last results from one of the attached vortices crossing to the opposite side of the body during flow reversal; in the other cases the attached vortices are convected back on the same sides. For convenience these formations are called: symmetric without pairing, symmetric with pairing, sinuous with pairing and vortex shedding. They are shown on KC/S planes for both geometries. Numerical modelling of the flows for the conical island, based on the three-dimensional shallow-water equations with the hydrostatic pressure assumption, is undertaken in Part 2 (Stansby & Lloyd 2001).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3