Numerical verification of the similarity laws for the formation of laminar vortex rings

Author:

HETTEL M.,WETZEL F.,HABISREUTHER P.,BOCKHORN H.

Abstract

From analytical investigations it is well known that the roll-up of an inviscid plane vortex sheet which separates at the edge of a body is a self-similar process which can be described by scaling laws. Unlike plane vortices, ring vortices have a curved rotational axis. For this special vortex type experimental investigations as well as calculations in the literature suggest that the scaling laws are only partially valid. The main goal of this work is to clarify how far these similarity or scaling laws are also valid for the formation of viscid laminar vortex rings. Therefore, the formation process of laminar vortex rings was investigated numerically using a CFD (computational-fluid-dynamics) code. The calculations refer to an experimental setup for which detailed experimental data are available in the literature. In this setup, laminar ring vortices are generated by ejecting water from a circular tube into a quiescent environment by means of a piston. First, a case based on a constant piston velocity was investigated. Comparing calculated and measured data yields a very good agreement. Further calculations were made when forcing the velocity of the piston by three different time-dependent functions. The results of these calculations show that the formation laws for inviscid plane vortices are also valid for the formation process of viscid ring vortices. This applies to the normalized axial and radial position of the vortex centre as well as the normalized diameter of the vortex spiral. However, the similarity laws are valid only if the process is considered in a special frame of reference which moves in conjunction with the front of the jet and if the starting time of the formation process with respect to the starting time of the ejection is taken into account. Additionally, the formation of a ring vortex, which occurs during the start-up process of a free jet flow, was calculated. The results confirm a dependence for the motion of the jet front, which is known from analytical considerations and allows some interesting features to be identified.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference44 articles.

1. Some experimental studies of vortex rings

2. Experiments on the trajectory and circulation of the starting vortex

3. A numerical study of the roll-up of a finite vortex sheet

4. Didden N. 1977 Untersuchung laminarer, instabiler Ringwirbel mittels Laser-Doppler-Anemometrie. Mitteilungen aus dem Max-Planck-Institut für Strömungsforschung und der Aerodynamischen Versuchsanstalt, Herausgegeben von E.-A. Müller und H. Schlichting, Göttingen.

5. Hettel M. 2006 Analytische und numerische Untersuchungen der Dynamik von Vormischflammen sowie deren Interaktion mit Ringwirbelstrukturen. PhD thesis, University of Karlsruhe.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3