Particle motion in resonance tubes

Author:

GOLDSHTEIN A.,SHUSTER K.,VAINSHTEIN P.,FICHMAN M.,GUTFINGER C.

Abstract

Small particle motions in standing or travelling acoustic waves are well known and extensively studied. Particle motion in weak shock waves has been studied much less, especially particle motion in periodic weak shock waves which as yet has not been dealt with.The present study considers small particle motions caused by weak periodic shock waves in resonance tubes filled with air. A simple mathematical model is developed for resonance gas oscillations under the influence of a vibrating piston with a finite amplitude at the first acoustic resonance frequency. It is shown that a symmetrical sinusoidal piston motion generates non-symmetric periodic shock waves. A model of particle motion in such a flow field is suggested. It is found that non-symmetric shock waves cause particle drift from the middle cross-section toward the ends of the resonance tube. The velocity of particle drift is found to be of the order of Dpρp/ Trρg, where Dp is the particle diameter, Tr the period of the resonance oscillation, ρp and ρg are the particle and gas density, respectively. At the same time, the velocity drift strongly depends on the ratio τ/Tr, where τ is the particle relaxation time. Particle drift is vigorous when τ/Tr∼1 and insignificant when τ/Tr 1. Theoretical predictions of particle drift in resonance tubes are verified numerically as well as experimentally.When the particle relaxation time is much smaller than period of the resonance oscillations particles perform oscillations around their equilibrium positions with amplitude of the order of Dpρpg. It is shown that the difference in oscillation amplitude of particle of difference sizes explains coalescence of aerosol droplets observed in experiments of Temkin (1970).The importance of the phenomena for particle separation, coagulation and transport processes is discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3