Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface

Author:

KATE R. P.,DAS P. K.,CHAKRABORTY SUMAN

Abstract

An obliquely inclined circular water jet, impinging on a flat horizontal surface, confers a series of hydraulic jump profiles, pertaining to different jet inclinations and jet velocities. These jump profiles are non-circular, and can be broadly grouped into two categories, based on the angle of jet inclination, φ, made with horizontal. Jumps corrosponding to the range (25° < φ≤ 90°) are observed to be bounded by smooth curves, whereas those corresponding to φ≤ 25° are characterized by distinct corners. The present work attempts to find a geometric and hydrodynamic characterization of the spatial patterns formed as a consequence of such non-circular hydraulic jump profiles. Flow-visualization experiments are conducted to depict the shape of demarcating boundaries between supercritical and subcritical flows, and the corresponding radial jump locations are obtained. Theoretical calculations are also executed to obtain the radial locations of the jumps with geometrically smooth profiles. Comparisons are subsequently made between the theoretical predictions and the experimental observations, and a good agreement between these two can be observed. Jumps with corners, however, turn out to be comprised of strikingly contrasting profiles, which can be attributed to the ‘jump–jet’ interaction and the ‘jump-jump’ interaction mechanisms. A phenomenological explanation is also provided, by drawing an analogy from the theory of shock-wave interactions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3