On the secondary instability of Taylor-Görtler vortices to Tollmien-Schlichting waves in fully developed flows

Author:

Bennett James,Hall Philip

Abstract

There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Görtler vortices are possible causes of transition to turbulence. In this paper, the effect of fully nonlinear Taylor-Görtler vortices on the growth of small-amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external-boundary-layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmien-Schlichting waves considered have the asymptotic structure of lower-branch modes of plane Poiseuille flow. Whilst instabilities at lower Reynolds number are possible, the former modes are simpler to analyse and more relevant to the boundary-layer problem. The effect of fully nonlinear Taylor-Görtler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference13 articles.

1. Seminara, G. 1976 Instability of some unsteady viscous flows. Ph.D. Thesis,University of London.

2. Smith, F. T. 1979b On the non-parallel flow stability of the Blasius boundary layer.Proc. R. Soc. Lond. A368,573.

3. Hall, P. 1982b On the non-linear evolution of Görtler vortices in non-parallel boundary layers.IMA J. Appl. Maths 29,173–196.

4. Smith, F. T. 1979a Instability of flow through pipes of general cross-section.Mathematika 26,187–210.

5. Hall, P. 1983 The linear development of Görtler vortices in growing boundary layers.J. Fluid Mech. 130,41–59.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3