Fully developed periodic turbulent pipe flow. Part 1. Main experimental results and comparison with predictions

Author:

Tu S. W.,Ramaprian B. R.

Abstract

The present paper is the first part of a two-part report on a detailed investigation of periodic turbulent pipe flow. In this investigation, experimental data on instantaneous velocity and wall shear stress were obtained at a mean Reynolds number of 50000 in a fully developed turbulent pipe flow in which the volumetric flow rate was varied sinusoidally with time around the mean. Two oscillation frequencies at significant levels of flow modulation were studied in detail. The higher of these frequencies was of the order of the turbulent bursting frequency in the flow, and the other can be regarded as an intermediate frequency at which the flow still departed significantly from quasi-steady behaviour. While a few similar experiments have been reported in the recent literature, the present study stands out from the others in respect of the flow regimes investigated, the magnitude of flow modulation, the detailed nature of the measurements and most importantly the identification of a relevant parameter to characterize unsteady shear flows. The present paper contains the main experimental results and comparisons of these results with the results of a numerical calculation procedure which employs a well-known quasi-steady turbulence closure model. The experimental data are used to study the manner in which the time-mean, the ensemble-averaged and the random flow properties are influenced by flow oscillation at moderate to high frequencies. In addition, the data are also used to bring out the capability and limitations of quasi-steady turbulence modelling in the prediction of unsteady shear flows. A further and more detailed analysis of the experimental data, results of some additional experiments and a discussion on the characterization of turbulent shear flows are provided in Part 2 (Ramaprian & Tu 1983).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference16 articles.

1. Ramaprian, B. R. & Tu, S. W. 1980 An experimental study of oscillatory pipe flow at transitional Reynolds numbers J. Fluid Mech. 100,513–544.

2. Patankar, S. V. 1967 Heat and mass transfer in turbulent boundary layers. Ph.D. thesis, Imperial College of Science and Technology, Mech. Engng Dept.

3. Rao, K. N. , Narasimha, R. & Badri Narayanan, M. A. 1971 The ‘bursting’ phenomena in a turbulent boundary layer.J. Fluid Mech. 48,339–810.

4. Binder, B. & Kueny, J. L. 1981 Measurements of the periodic velocity oscillations near the wall in unsteady turbulent channel flow. In Unsteady Turbulent Shear Flows (ed. R. Michel , J. Cousteix & R. Houdeville ),pp.100–108.Springer.

5. Kirmse, R. E. 1979 Investigations of pulsating turbulent pipe flow.ASME Paper 79-WA/FE-1.

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3