A magnetohydrodynamic chaotic stirrer

Author:

YI MINGQIANG,QIAN SHIZHI,BAU HAIM H.

Abstract

A magnetohydrodynamic (MHD) stirrer that exhibits chaotic advection is investigated experimentally and theoretically. The stirrer consists of a circular cavity with an electrode (C) deposited around its periphery. Two additional electrodes (A) and (B) are deposited eccentrically inside the cavity on the bottom. The cavity is positioned in a uniform magnetic field that is parallel to the cylinder's axis, and it is filled with a weak electrolyte solution. Fluid motion is induced in the cavity by applying a potential difference across a pair of electrodes. A closed-form, analytical solution is derived for the MHD creeping flow field in the gap between the two eccentric cylinders. A singular solution is obtained for the special case when the size of the inner electrode shrinks to a point. Subsequently, passive tracers' trajectories are computed when the electric potential differences are applied alternately across electrodes AC and BC with period T. At small periods T, the flow is regular and periodic in most of the cavity. As the period increases, so does the complexity of the motion. At relatively large periods, the passive tracer experiences global chaotic advection. Such a device can serve as an efficient stirrer. Since this device has no moving parts, it is especially suitable for microfluidic applications. This is yet another practical example of a modulated, two-dimensional Stokes flow that exhibits chaotic advection.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3