Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 1. Non-separated flows

Author:

Zilker Daniel P.,Cook Gerald W.,Hanratty Thomas J.

Abstract

Measurements of the shear-stress variation along and the velocity profiles above a solid wavy wall bounding a turbulent flow are presented for waves with height-to-length ratios of 2a/λ = 0·0312 and 0·05. These are compared with previous measurements of the wall shear stress reported by Thorsness (1975) and by Morrisroe (1970) for 2a/λ = 0·012. The investigation covered a range of conditions from those for which a linear behaviour is observed to those for which a separated flow is just being initiated.Pressure measurements indicate a linear response in that the spatial variation is described quite well by a single harmonic with a wavelength equal to that of the surface. However, the variation of τw for waves with 2a/λ = 0·0312 and 0·05 can be more rapid on the leeward side of the wave. The degree of departure from a sinusoidal variation increases with increasing wave height and fluid velocity and, from the results reported in this paper, it is suggested that nonlinear behaviour will become evident when au*/v [ges ] 27.Many aspects of the flow for all three waves are described by a solution of the linear momentum equations previously presented by Thorsness (1975) and by Thorsness & Hanratty (1977). These include the phase and amplitude of the pressure profile and the first harmonic of the shear-stress profile and the velocity field outside the viscous wall region.These results suggest that up to separation the flow is approximated quite well by linear theory. Nonlinearities affect the flow only in a region very close to the wave surface and are manifested by the appearance of higher harmonics in the variation of τw.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference29 articles.

1. Jolls, K. R. & Hanratty, T. J. 1969 A.I.Ch.E. J. 15,199.

2. Thorsness, C. B. & Hanratty, T. J. 1977 Turbulent flow over wavy surfaces. In Proc. Symp. Turbulent Flows, Pennsylvania State Univ .

3. Dimopoulos, H. & Hanratty, T. J. 1968 J. Fluid Mech. 33,303.

4. Loyd, R. J. , Moffat, R. J. & Kays, W. M. 1970 Thermosci. Div., Stanford Univ. Rep. HMT-13.

5. Helmholtz, H. 1868 Mber. preuss Akad. Wiss. 24,215.

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3