Flame balls stabilized by suspension in fluid with a steady linear ambient velocity distribution

Author:

Buckmaster J.,Joulin G.

Abstract

The ignition of lean H2/air mixtures under microgravity (μg) conditions can lead to the formation of spherical premixed flames (flame balls) with small Péclet number (Pe). A central question concerning these structures is the existence of appropriate stationary stable solutions of the combustion equations. In this paper we examine an individual flame ball that is suspended in a fluid whose velocity far from the flame is steady and varies linearly in space. Detailed results are obtained for simple shear flows and simple straining flows, both axisymmetric and plane.Convection enhances the flux of heat from the flame and the flux of mixture to the flame, but because the Lewis number (Le) is less than unity the relative impact on the former is greater than on the latter. Consequently, there is a net loss of energy from the flame to the far field, and if large enough this will quench the flame. For values of shear or strain less than the quenching value there are two possible stationary solutions, but one of these is unstable to spherically symmetric disturbances of the flame ball. The radius of the other solution is unbounded as Pe goes to zero. Examination of a class of three-dimensional disturbances reveals no additional instability when the energy losses are due only to convection, but sufficiently large flame balls are unstable when volumetric heat losses from radiation are accounted for. This last result is in agreement with previous results that have been obtained for zero Pe, albeit with inadequate accounting for the flow field generated by the perturbations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference9 articles.

1. Weeratunga, S. , Buckmaster, J. & Johnson, R. E. 1990 A flame-bubble analogue and its stability.Combust. Flame 79,100–109.

2. Lewis, B. & Elbe, G. von 1987 Combustion, Flames and Explosions of Gases ,3rd edn. p.326.Academic.

3. Buckmaster, J. D. & Ludford, G. S. S. 1983 Lectures on Mathematical Combustion ,pp.22. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 43.SIAM.

4. Ronney, P. D. 1990 Near-limit flame structures at low Lewis number.Combust. Flame 82,1–14.

5. Williams, F. A. 1985 Combustion Theory ,2nd edn. Benjamin/Cummings.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3