Collision of two vortex rings

Author:

Kida S.,Takaoka M.,Hussain F.

Abstract

The interaction of two identical circular viscous vortex rings starting in a side-by-side configuration is investigated by solving the Navier–Stokes equation using a spectral method with 643 grid points. This study covers initial Reynolds numbers (ratio of circulation to viscosity) up to 1153. The vortices undergo two successive reconnections, fusion and fission, as has been visualized experimentally, but the simulation shows topological details not observed in experiments. The shapes of the evolving vortex rings are different for different initial conditions, but the mechanism of the reconnection is explained by bridging (Melander & Hussain 1988) except that the bridges are created on the front of the dipole close to the position of the maximum strain rate. Spatial structures of various field quantities are compared. It is found that domains of high energy dissipation and high enstrophy production overlap, and that they are highly localized in space compared with the regions of concentrated vorticity. The kinetic energy decays according to the same power laws as found in fully developed turbulence, consistent with concentrated regions of energy dissipation. The main vortex cores survive for a relatively long time. On the other hand, the helicity density which is higher in roots of bridges and threads (or legs) changes rapidly in time. The high-helicity-density and high-energy-dissipation regions overlap significantly although their peaks do not always do so. Thus a long-lived structure may carry high-vorticity rather than necessarily high-helicity density. It is shown that the time evolution of concentration of a passive scalar is quite different from that of the vorticity field, confirming our longstanding warning against relying too heavily on flow visualization in laboratory experiments for studying vortex dynamics and coherent structures.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference50 articles.

1. Uberoi, M. S. 1963 Energy transfer in isotropic turbulence.Phys. Fluids 6,1048–1056.

2. Schwahz, K. W. 1985 Three-dimensional vortex dynamics in superfluid 4He: line-line and line-boundary interactions.Phys. Rev. B31,5782–5804.

3. Stanaway, S. , Shariff, K. & Hussain, F. 1988 Head-on collision of viscous vortex rings. Center for Turbulence Research: Proc. Summer Program 1988 .

4. Saffman, P. G. 1967 The large-scale structure of homogeneous turbulence.J. Fluid Mech.27,581–593.

5. Moffatt, K. 1985 Magnetostatic equilibria and analogous Euler flows of arbitrary complex topology. Part 1. Fundamentals.J. Fluid Mech.159,359–378.

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3