Dynamical properties of forced shear layers in an annular geometry

Author:

BERGERON K.,COUTSIAS E. A.,LYNOV J. P.,NIELSEN A. H.

Abstract

Results of numerical simulations of a forced shear flow in an annular geometry are presented. The particular geometry used in this work reduces the effects of centrifugal and Coriolis forces. However, there are still a large number of system parameters (shear width, shear profile, radius of curvature, initial conditions, etc.) to characterize. This set of variables is limited after the code has been validated with experimental results (Rabaud & Couder 1983; Chomaz et al. 1988) and with the associated linear stability analysis. As part of the linear stability characterization, the pseudo-spectrum for the associated Orr–Sommerfeld operator for plane, circular Couette flow is calculated, and it is found to be insensitive to perturbations.The numerical simulation code is a highly accurate de-aliased spectral method which utilizes banded operators to increase the computational efficiency. Viscous dissipation terms enter the code directly from the equations of motion. The results from the simulation code at low Reynolds numbers are compared with the results from linear stability analysis and are used to give predictions for the coefficients of the Landau equation describing the saturation behaviour near the critical Reynolds number. Numerical results at higher Reynolds numbers demonstrate the effects of spin-up and spin-down, including the experimentally observed hysteresis. The properties of two- dimensional shears at high Reynolds numbers, at which temporal states are formed, are also addressed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3