The phase diffusion and mean drift equations for convection at finite Rayleigh numbers in large containers

Author:

Newell Alan C.,Passot Thierry,Souli Mohammad

Abstract

We derive the phase diffusion and mean drift equations for the Oberbeck–Boussinesq equations in large-aspect-ratio containers. We are able to recover all the long-wave instability boundaries (Eckhaus, zigzag, skew-varicose) of straight parallel rolls found previously by Busse and his colleagues. Moreover, the development of the skew-varicose instability can be followed and it becomes clear how the mean drift field conspires to enhance the necking of phase contours necessary for the production of dislocation pairs. We can calculate the wavenumber selected by curved patterns and find very close agreement with the dominant wavenumbers observed by Heutmaker & Gollub at Prandtl number 2.5, and by Steinberg, Ahlers & Cannell at Prandtl number 6.1. We find a new instability, the focus instability, which causes circular target patterns to destabilize and which, at sufficiently large Rayleigh numbers, may play a major role in the onset of time dependence. Further, we predict the values of the Rayleigh number at which the time-dependent but spatially ordered patterns will become spatially disordered. The key difficulty in obtaining these equations is the fact that the phase diffusion equation appears as a solvability condition at order ε (the inverse aspect ratio) whereas the mean drift equation is the solvability condition at order ε2. Therefore, we had to use extremely robust inversion methods to solve the singular equations at order ε and the techniques we use should prove to be invaluable in a wide range of similar situations. Finally, we discuss the introduction of the amplitude as an active order parameter near pattern defects, such as dislocations and foci.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theoretical Mantle Dynamics;2018-09-20

2. The Sun’s supergranulation;Living Reviews in Solar Physics;2018-09-10

3. Nonlinear steady states to Langmuir circulation in shallow layers: an asymptotic study;Geophysical & Astrophysical Fluid Dynamics;2016-12-07

4. Analytical Approaches to Mantle Dynamics;Treatise on Geophysics;2015

5. ‘Quarks’ and ‘leptons’ in three dimensional patterns;European Journal of Mechanics - B/Fluids;2014-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3