Instability and transitions of flow in a curved square duct: the development of two pairs of Dean vortices

Author:

Mees Philip A. J.,Nandakumar K.,Masliyah J. H.

Abstract

Steady developing flow of an incompressible Newtonian fluid in a curved duct of square cross-section (the Dean problem) is investigated both experimentally and numerically. This study is a continuation of the work by Bara, Nandakumar & Masliyah (1992) and is focused on flow rates between Dn = 200 and Dn = 600 (Dn = Re/(R/a)1/2, where Re is the Reynolds number, R is the radius of curvature of the duct and a is the duct dimension; the curvature ratio, R/a, is 15.1).Numerical simulations based on the steady three-dimensional Navier – Stokes equations predict the development of a 6-cell secondary flow pattern above a Dean number of 350. The 6-cell state consists of two large Ekman vortices and two pairs of small Dean vortices near the outer wall that result from the primary instability that is of centrifugal nature. The 6-cell flow state develops near θ = 80° and breaks down symmetrically into a 2-cell flow pattern.The apparatus used to verify the simulations had a duct dimension of 1.27 cm and a streamwise length of 270°. At a Dean number of 453, different velocity profiles of the 6-cell flow state at θ = 90° and spanwise profiles of the streamwise velocity at every 20° were measured using a laser-Doppler anemometer. All measured velocity profiles, as well as flow visualization of secondary flow patterns, are in very good agreement with the simulations, indicating that the parabolized Navier – Stokes equations give an accurate description of the flow.Based on the similarity with boundary layer flow over a concave wall (the Görtler problem), it is suggested that the transition to the 6-cell flow state is the result of a decreasing spanwise wavelength of the Dean vortices with increasing flow rate. A numerical stability analysis shows that the 6-cell flow state is unconditionally unstable. This is the first time that detailed experiments and simulations of the development of a 6-cell flow state are reported.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference56 articles.

1. Benjamin, T. B. 1978b Bifurcation phenomena in steady flows of a viscous fluid, II. Eperiments.Proc. R. Soc. Lond. A359,27–43.

2. Mees, P. A. J. , Nandakumar, K. & Masliyah, J. H. 1996 Steady spatial oscillations in a curved duct of square cross section (submitted for publication).

3. Benjamin, T. B. 1978a Bifurcation phenomena in steady flows of a viscous fluid, I. Theory.Proc. R. Soc. Lond. A359,1–26.

4. Winters, K. H. 1987 A bifurcation study of laminar flow in a curved tube of rectangular cross-section.J. Fluid Mech. 180,343–369.

5. Itō, H. 1951 Theory on laminar flows through curved pipes of elliptic and rectangular cross-sections. Rep. Inst. High Speed Mech., Tōhoku Univ., Sendai, Japan 1,1–16.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3