Three-dimensional and multicellular steady and unsteady convection in fluid-saturated porous media at high Rayleigh numbers

Author:

Schubert Gerald,Straus Joe M.

Abstract

In an effort to determine the characteristics of the various types of convection that can occur in a fluid-saturated porous medium heated from below, a Galerkin approach is used to investigate three-dimensional convection in a cube and two-dimensional convection in a square cross-section. Strictly two-dimensional, single-cell flow in a square cross-section is steady for Rayleigh numbers R between 4π2 and a critical value which lies between 300 and 320; it is unsteady at higher values of R. Double-cell, two-dimensional flow in a square cross-section becomes unsteady when R exceeds a value between 650 and 700, and triple-cell motion is unsteady for R larger than a value between 800 and 1000. Considerable caution must be exercised in attributing physical reality to these flows. Strictly two-dimensional, steady, multicellular convection may not be realizable in a three-dimensional geometry because of instability to perturbations in the orthogonal dimension. For example, even though single-cell, two-dimensional convection in a square cross-section is steady at R = 200, it cannot exist in either an infinitely long square cylinder or in a cube. It could exist, however, in a cylinder whose length is smaller than 0.38 times the dimension of its square cross-section. Three-dimensional convection in a cube becomes unsteady when R exceeds a value between 300 and 320, similar to the unicellular two-dimensional flow in a square cross-section. Nusselt numbers Nu, generally accurate to 1%, are given for the strictly two-dimensional flows up to R = 1000 and for three-dimensional convection in cubes up to R = 500. Single-cell, two-dimensional, steady convection in a square cross-section transports the most heat for R < 97; this mode of convection is also stable in square cylinders of arbitrary length including the cube for R < 97. Steady three-dimensional convection in cubes transports more heat for 97 [lsim ] R [lsim ] 300 than do any of the realizable two-dimensional modes. At R [gsim ] 300 the unsteady modes of convection in both square cylinders and cubes involve wide variations in Nu.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3