On the Rayleigh-Taylor problem in magneto-hydrodynamics with finite resistivity

Author:

Jukes J. D.

Abstract

In order to elucidate the importance of the infinite conductivity assumption in MHD a simple problem has been studied. This is a Rayleigh-Taylor problem of two superposed fluids under gravity partially stabilized by a uniform, horizontal magnetic field. It is found that the inclusion of a small, but finite resistivity introduces new and unexpected solutions. For instance, moderately long, stabilized’ waves are now found to grow aperiodically and unexpectedly rapidly at a rate ∝ ($\rm {resistivity}^{\frac{1}{3}$). Other modes are found to be periodic and damped at a rate ∝ ($\rm {resistivity}^{\frac{1}{3}$).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference4 articles.

1. Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability .Oxford University Press.

2. Bickerton, R. J. , Aitken, K. , Hardcastle, R. , Jukes, J. D. , Reynolds, P. & Spalding, I. 1961 Pinch Stability–Theory and Experiment. Paper 10/68.Proc. Int. Conf. Plasma Physics, Salzburg.

3. Tayler, R. J. 1960 Stability of twisted magnetic fields in a fluid of finite electrical conductivity.Rev. Mod. Phys. 32,907.

4. Jukes, J. D. 1961 Stability of the sharp pinch and unpinch with finite resistivity.Phys. Fluids,4,1527.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3