On the viscous motion of a small particle in a rotating cylinder

Author:

COIMBRA CARLOS F. M.,KOBAYASHI MARCELO H.

Abstract

The dynamics of a non-neutrally buoyant particle moving in a rotating cylinder filled with a Newtonian fluid is examined analytically. The particle is set in motion from the centre of the cylinder due to the acceleration caused by the presence of a gravitational field. The problem is formulated in Cartesian coordinates and a relevant fractional Lagrangian equation is proposed. This equation is solved exactly by recognizing that the eigenfunctions of the problem are Mittag–Leffler functions. Virtual mass, gravity, pressure, and steady and history drag effects at low particle Reynolds numbers are considered and the balance of forces acting on the particle is studied for realistic cases. The presence of lift forces, both steady and unsteady, is taken into account. Results are compared to the exact solution of the Maxey–Riley equation for the same conditions. Substantial differences are found by including lift in the formulation when departing from the infinitesimal particle Reynolds number limit. For particles lighter than the fluid, an asymptotically stable equilibrium position is found to be at a distance from the origin characterized by X ≈ −Vτ/Ω and Y/X ≈ (CS/3π√2) Res1/2, where Vτ is the terminal velocity of the particle, Ω is the positive angular velocity of the cylinder, Res is the shear Reynolds number a2Ω/v, and CS is a constant lift coefficient. To the knowledge of the authors this work is the first to solve the particle Lagrangian equation of motion in its complete form, with or without lift, for a non-uniform flow using an exact method.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3