Characterization of the interactions of two unequal co-rotating vortices

Author:

BRANDT LAURA K.,NOMURA KEIKO K.

Abstract

The interactions and merging of two unequal co-rotating vortices in a viscous fluid are investigated. Two-dimensional numerical simulations of initially equal-sized vortices with differing relative strengths are performed. In the case of equal-strength vortices, i.e. symmetric vortex pairs (Brandt & Nomura, J. Fluid Mech., vol. 592, 2007, pp. 413–446), the mutually induced strain deforms and tilts the vortices, which leads to a core detrainment process. The weakened vortices are mutually entrained and rapidly move towards each other as they intertwine and destruct. The flow thereby develops into a single compound vortex. With unequal strengths, i.e. asymmetric pairs, the disparity of the vortices alters the interaction. Merger may result from reciprocal but unequal entrainment, which yields a compound vortex; however other outcomes are possible. The various interactions are classified based on the relative timing of core detrainment and core destruction of the vortices. Through scaling analysis and simulation results, a critical strain rate parameter which characterizes the establishment of core detrainment is identified and determined. The onset of merging is associated with the achievement of the critical strain rate by ‘both’ vortices, and a merging criterion is thereby developed. In the case of symmetric pairs, the critical strain rate parameter is shown to be related to the critical aspect ratio. In contrast with symmetric merger, which is in essence a flow transformation, asymmetric merger may result in the domination of the stronger vortex because of the unequal deformation rates. If the disparity of the vortex strengths is sufficiently large, the critical strain rate is not attained by the stronger vortex before destruction of the weaker vortex, and the vortices do not merge.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference24 articles.

1. Coalescing of geostrophic vortices

2. The physics of vortex merger: Further insight

3. Bewley T. R. 2010 Numerical Renaissance: Simulation, Optimization, and Control. http://numerical-renaissance.com/Diablo.html, Renaissance.

4. Equilibria of corotating nonuniform vortices

5. Quantification of the inelastic interaction of unequal vortices in two‐dimensional vortex dynamics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3