Boundary-layer thickness effects of the hydrodynamic instability along an impedance wall

Author:

RIENSTRA SJOERD W.,DARAU MIRELA

Abstract

The Ingard–Myers condition, modelling the effect of an impedance wall under a mean flow by assuming a vanishingly thin boundary layer, is known to lead to an ill-posed problem in time domain. By analysing the stability of a linear-then-constant mean flow over a mass-spring-damper liner in a two-dimensional incompressible limit, we show that the flow is absolutely unstable for h smaller than a critical hc and convectively unstable or stable otherwise. This critical hc is by nature independent of wavelength or frequency and is a property of liner and mean flow only. An analytical approximation of hc is given, which is complemented by a contour plot covering all parameter values. For an aeronautically relevant example, hc is shown to be extremely small, which explains why this instability has never been observed in industrial practice. A systematically regularised boundary condition, to replace the Ingard–Myers condition, is proposed that retains the effects of a finite h, such that the stability of the approximate problem correctly follows the stability of the real problem.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference35 articles.

1. Stability and acoustic scattering in a cylindrical thin shell containing compressible mean flow

2. Brambley E. J. 2010 A well-posed modified Myers boundary condition. In 16th AIAA/CEAS Aeroacoustics Conference, 7–9 June 2010, Stockholm, Sweden. AIAA 2010–3942.

3. Sound propagation in a fluid flowing through an attenuating duct

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3