The structure and development of a wing-tip vortex

Author:

Devenport William J.,Rife Michael C.,Liapis Stergios I.,Follin Gordon J.

Abstract

Experiments have been performed on the tip vortex trailing from a rectangular NACA 0012 half-wing. Preliminary studies showed the vortex to be insensitive to the introduction of a probe and subject only to small wandering motions. Meaningful velocity measurements could therefore be made using hot-wire probes.Detailed analysis of the effects of wandering was performed to properly reveal the flow structure in the core region and to give confidence in measurements made outside the core. A theory has been developed to correct mean-velocity profiles for the effects of wandering and to provide complete quantitative estimates of its amplitude and contributions to Reynolds stress fields. Spectral decomposition was found to be the most effective method of separating these contributions from velocity fluctuations due to turbulence.Outside the core the flow structure is dominated by the remainder of the wing wake which winds into an ever-increasing spiral. There is no large region of axisymmetric turbulence surrounding the core and little sign of turbulence generated by the rotational motion of the vortex. Turbulence stress levels vary along the wake spiral in response to the varying rates of strain imposed by the vortex. Despite this complexity, the shape of the wake spiral and its turbulent structure reach an approximately self-similar form.On moving from the spiral wake to the core the overall level of velocity fluctuations greatly increases, but none of this increase is directly produced by turbulence. Velocity spectra measured at the vortex centre scale in a manner that implies that the core is laminar and that velocity fluctuations here are a consequence of inactive motion produced as the core is buffeted by turbulence in the surrounding spiral wake. Mean-velocity profiles through the core show evidence of a two-layered structure that dies away with distance downstream.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference74 articles.

1. Steger, J. L. & Cutler, P. 1976 Implicit finite-difference procedures for the computation of vortex wakes. AIAA Paper 76-385.

2. Zsoldos, J. S. & Devenport, W. J. 1992 An experimental investigation of interacting trailing vortex pairs.Proc. 19th Symp. on Naval Hydrodynamics,Seoul, South Korea, August.

3. Tutu, N. K. & Chevray, R. 1975 Cross-wire anemometry in high-intensity turbulence.J. Fluid Mech. 71,785–800.

4. Vogel, C. M. , Devenport, W. J. & Zsoldos, J. S. 1995 Turbulence structure of a pair of merging tip vortices. 10th Symp. on Turbulent Shear Flows, Pennsylvania State University, August 14–16 .

5. Stinebring, D. R. , Farell, K. J. & Billet, M. L. 1991 The structure of a three-dimensional tip vortex at high Reynolds numbers.Trans. ASME Fluids Engng 113,496–503.

Cited by 433 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3