Shear flow over a liquid drop adhering to a solid surface

Author:

Li Xiaofan,Pozrikidis C.

Abstract

The hydrostatic shape, transient deformation, and asymptotic shape of a small liquid drop with uniform surface tension adhering to a planar wall subject to an overpassing simple shear flow are studied under conditions of Stokes flow. The effects of gravity are considered to be negligible, and the contact line is assumed to have a stationary circular or elliptical shape. In the absence of shear flow, the drop assumes a hydrostatic shape with constant mean curvature. Families of hydrostatic shapes, parameterized by the drop volume and aspect ratio of the contact line, are computed using an iterative finite-difference method. The results illustrate the effect of the shape of the contact line on the distribution of the contact angle around the base, and are discussed with reference to contact-angle hysteresis and stability of stationary shapes. The transient deformation of a drop whose viscosity is equal to that of the ambient fluid, subject to a suddenly applied simple shear flow, is computed for a range of capillary numbers using a boundary-integral method that incorporates global parameterization of the interface and interfacial regriding at large deformations. Critical capillary numbers above which the drop exhibits continued deformation, or the contact angle increases beyond or decreases below the limits tolerated by contact angle hysteresis are established. It is shown that the geometry of the contact line plays an important role in the transient and asymptotic behaviour at long times, quantified in terms of the critical capillary numbers for continued elongation. Drops with elliptical contact lines are likely to dislodge or break off before drops with circular contact lines. The numerical results validate the assumptions of lubrication theory for flat drops, even in cases where the height of the drop is equal to one fifth the radius of the contact line.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference28 articles.

1. Pozrikidis, C. 1995c Shear flow over an axisymmetric protuberance on a plane wall.J. Engng Maths (Submitted).

2. Abramowitz, M. & Stegun, I. A. 1970 Handbook of Mathematical Functions , p.883.Dover.

3. Dussan, V., E. B. & Chow, R. T.-P. 1983 On the ability of drops or bubbles to stick to non-horizontal surfaces of solids.J. Fluid Mech. 137,1–29.

4. Dussan, V., E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines.Ann. Rev. Fluid Mech. 11,371–400.

5. Pozrikidis, C. 1995a Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow.J. Fluid Mech. 297,123–152.

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3