The slow motion of a rigid particle in a second-order fluid

Author:

Brunn P.

Abstract

The purpose of the present paper is to reach some general conclusions on the motion of rigid particles in a homogeneous shear flow of a viscoelastic fluid. Under the basic assumption of nearly Newtonian slow flow, the creeping-motion equations for a second-order fluid with characteristic time constants κ0(2) and κ0(11) can be employed. It is shown that the κ0(2) contributions to the hydrodynamic force F and couple G depend upon the hydrodynamic force, couple and stresslet which act upon the particle in a Newtonian fluid (termed F(1), G(1) and S(1), respectively). Since this relation involves time derivatives of F(1) and G(1), a little reflexion is needed to realize that the modification of the classical Stokes law for steady translation in a quiescent fluid can have no κ0(2) term. Since no results of such generality are possible for the κ0(11) contributions we focus attention on transversely isotropic particles. Employing the concept of material tensors, the symmetry of such particles dictates the form these tensors adopt. This alone is sufficient to show that sedimentation in a quiescent fluid is accompanied by a change in orientation until a stable terminal orientation is attained. Depending upon the type of particle only one of the two orientations, axis of symmetry parallel or perpendicular to the external force, is stable. Another result concerns two-dimensional shear flow, for which we show that the symmetry axis has to drift through various Jeffery orbits until an equilibrium orientation is reached. While the orbits C = 0 and C = ∞ are equilibrium orbits for every transversely isotropic particle there may be a third such preferred orbit, which we denote by C*. In order for these orbits to be stable certain restrictions have to hold, showing that the orbits C = 0 and C* cannot both be stable. For the special case of a rigid tridumbbell of axis ratio s the orbit C* does not exist. If s > 1 the drift for this particle is into the orbit C = 0 while for s < 1 it is into the orbit C = ∞. This agrees qualitatively quite well with experimental results obtained for rods and disks. No quantitative comparison is possible; the particle shape influences the result quantitatively owing to its effect on the combination of the fluid parameters κ0(2) and κ0(11).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference9 articles.

1. Leal, L. G. 1975 J. Fluid Mech. 69,305–337.

2. Hinch, E. J. 1972 J. Fluid Mech. 54,423–425.

3. Brenner, H. 1972 Chem. Engng. Sci. 27,1069–1107.

4. Caswell, B. 1967 N.A.S.A. Rep. no. 83858.

5. Brunn, P. 1976a Rheol. Acta 15,104–119.

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3