Local balance and cross-scale flux of available potential energy

Author:

MOLEMAKER M. JEROEN,McWILLIAMS JAMES C.

Abstract

Gravitational available potential energy is a central concept in an energy analysis of flows in which buoyancy effects are dynamically important. These include, but are not limited to, most geophysical flows with persistently stable density stratification. The volume-integrated available potential energy ap is defined as the difference between the gravitational potential energy of the system and the potential energy of a reference state with the lowest potential energy that can be reached by adiabatic material rearrangement; ap determines how much energy is available for conservative dynamical exchange with kinetic energy k. In this paper we introduce new techniques for computing the local available potential energy density Eap in numerical simulations that allow for a more accurate and complete analysis of the available potential energy and its dynamical balances as part of the complete energy cycle of a flow. In particular, the definition of Eap and an associated gravitation disturbance field permit us to make a spectral decomposition of its dynamical balance and examine the cross-scale energy flux. Several examples illustrate the spatial structure of Eap and its evolutionary influences. The greatest attention is given to an analysis of a turbulent-equilibrium simulation Eady-like vertical-shear flow with rotation and stable stratification. In this regime Eap exhibits a vigorous forward energy cascade from the mesoscale through the submesoscale range – first in a scale range dominated by frontogenesis and positive buoyancy-flux conversion from ap to k and then, after strong frontal instability and frontogenetic arrest, in a coupled kinetic-potential energy inertial-cascade range with negative buoyancy-flux conversion – en route to fine-scale dissipation of both energy components.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3