Low-Reynolds-number fall of slender cylinders near boundaries

Author:

de Mestre N. J.

Abstract

The motion of bodies through fluid at low Reynolds number is appreciably affected by the container walls. Consequently the Stokes-flow theory due to Batchelor (1970) and others for a slender body falling in an unbounded fluid is difficult to test experimentally unless it is extended to take account of nearby boundaries. Theoretical expressions are given here for certain drag coefficients of a circular cylindrical slender rod of finite length falling close to a single plane wall or falling midway between two parallel plane walls. Experiments with a very viscous liquid are described in which cylinders of small thickness-to-length ratios (ranging from 1:10 to 1:100 approximately) are made to fall in suitable orientations. From their times of fall over a measured distance experimental drag coefficients are determined and compared with the corresponding theoretical value from the extension of Batchelor's theory. For rods falling in a horizontal orientation the theoretical and experimental results are consistent within the order of accuracy of the experiments. However, when results are compared for rods falling in a vertical orientation there is a significant difference for which possible explanations are presented.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference17 articles.

1. Tuck, E. O. 1968 Proc. 3rd Austr. Conf. on Hydraulics & Fluid Mech. p.29.Sydney:Inst. Engrs Austr.

2. Faxen, H. 1923 Arkiv. Mat. Astr. Fys. 17, no. 27.

3. Rosen, A. L. 1972 J. Inst. Math. Applics. 9,280.

4. Tillett, J. P. K. 1970 J. Fluid Mech. 44,401.

5. Brenner, H. 1962 J. Fluid Mech. 12,35.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3