Suppression of the von Kármán vortex street behind a circular cylinder by a travelling wave generated by a flexible surface

Author:

WU CHUI-JIE,WANG LIANG,WU JIE-ZHI

Abstract

An advanced moving-wall control strategy to manage the unsteady separated flow over a circular cylinder is developed. A two-dimensional numerical simulation of the flow over the cylinder at Re=500 based on diameter indicates that, when the downstream half of the cylinder surface is made flexible to form an appropriate travelling transverse wave, a ‘fluid roller bearing’ (FRB) is produced consisting of a row of vortices trapped by each wave trough, which can keep the global flow attached against a strong adverse pressure gradient, eliminating the vortex shedding and reducing the average drag by 85%. Physically, the FRB serves as a sheath to effectively inhibit the momentum–energy exchange between the thin fluid layer adjacent to the wall and the main stream, so that the wall layer is scaled only to the local wavelength and frequency and is independent of the global scales. Therefore, the global adverse pressure gradient on the lee side of the cylinder no longer influences the near-wall flow, and the common root cause of flow separation is removed. The input power for actuating the flexible wall is found to be 94% of the power saving due to drag reduction.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference29 articles.

1. Drag reduction by axisymmetric traveling wavy wall;Yang;J. Univ. Sci. Tech. Chin,2005

2. Review of the physics of enhancing vortex lift by unsteady excitation

3. Unsteady fluid-dynamic force solely in terms of control-surface integral

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3