Coherent structures in canopy edge flow: a large-eddy simulation study

Author:

DUPONT S.,BRUNET Y.

Abstract

Large coherent structures over vegetation canopies are responsible for a substantial part of the turbulent transfer of momentum, heat and mass between the canopy and the atmosphere. As forested landscapes are often fragmented, edge regions may be of importance in turbulent transfer. The development of coherent structures from the leading edge of a forest is investigated here for the first time. For this purpose, the turbulent flow over a clearing–forest pattern is simulated using the Advanced Regional Prediction System (ARPS). In previous studies the code has been modified so as to simulate turbulent flows at very fine scale (0.1h, where h is the mean canopy height) within and above heterogeneous vegetation canopies, using a large-eddy simulation (LES) approach. Validations have also been performed over homogeneous forest canopies and over a simple forest–clearing–forest pattern, against field and wind-tunnel measurements. Here, a schematic picture of the development of coherent eddies downstream from the leading edge of a forest is extracted from the mean vorticity components, the Q-criterion field, the cross-correlation of the wind velocity components and the length and separation length scales of coherent structures, determined by using a wavelet transform. This schematic picture shows strong similarities with the development of coherent structures observed in a mixing layer, with four different regions: (i) close to the edge, Kelvin–Helmholtz instabilities develop when a strong wind gust hits the canopy; (ii) these instabilities roll over to form transverse vortices from around 3h downstream from the edge, characterized by a length scale close to the depth of the internal boundary layer that develops from the canopy edge; (iii) secondary instabilities destabilize these rollers and increase the vertical and streamwise vorticity components from around 6h, and two counter-rotating streamwise vortices appear; (iv) at about 9h the initial rollers have become complex three-dimensional coherent structures, with spatially constant mean length and separation length scales. These four stages of development occur closer to the edge with increasing canopy density. While this average picture of the development of coherent structures is similar to that observed in a mixing layer, the analysis of instantaneous fields shows that coherent structures behind the leading edge appear as resulting from the ‘branching’ of tubes localized in regions of low pressure, where their cores are characterized by high values of enstrophy and Q-criterion.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3