Variable-density mixing in buoyancy-driven turbulence

Author:

LIVESCU D.,RISTORCELLI J. R.

Abstract

The homogenization of a heterogeneous mixture of two pure fluids with different densities by molecular diffusion and stirring induced by buoyancy-generated motions, as occurs in the Rayleigh–Taylor (RT) instability, is studied using direct numerical simulations. The Schmidt number, Sc, is varied by a factor of 20, 0.1 ≤ Sc ≤ 2.0, and the Atwood number, A, by a factor of 10, 0.05 ≤ A ≤ 0.5. Initial-density intensities are as high as 50% of the mean density. As a consequence of differential accelerations experienced by the two fluids, substantial and important differences between the mixing in a variable-density flow, as compared to the Boussinesq approximation, are observed. In short, the pure heavy fluid mixes more slowly than the pure light fluid: an initially symmetric double delta density probability density function (PDF) is rapidly skewed and, only at long times and low density fluctuations, does it relax to a Gaussian-like PDF. The heavy–light fluid mixing process asymmetry is relevant to the nature of molecular mixing on different sides of a high-Atwood-number RT layer. Diverse mix metrics are used to examine the homogenization of the two fluids. The conventional mix parameter, θ, is mathematically related to the variance of the excess reactant of a hypothetical fast chemical reaction. Bounds relating θ and the normalized product, Ξ, are derived. It is shown that θ underpredicts the mixing, as compared to Ξ, in the central regions of an RT layer; in the edge regions, θ is larger than Ξ. The shape of the density PDF cannot be inferred from the usual mix metrics popular in applications. For example, when θ, Ξ ≥ 0.6, characteristic of the interior of a fully developed RT layer, the PDFs can have vastly different shapes. Bounds on the fluid composition using two low-order moments of the density PDF are derived. The bounds can be used as realizability conditions for low-dimensional models. For the measures studied, the tightest bounds are obtained using Ξ and mean density. The structure of the flow is also examined. It is found that, at early times, the buoyancy production term in the spectral kinetic energy equation is important at all wavenumbers and leads to anisotropy at all scales of motion. At later times, the anisotropy is confined to the largest and smallest scales: the intermediate scales are more isotropic than the small scales. In the viscous range, there is a cancellation between the viscous and nonlinear effects, and the buoyancy production leads to a persistent small-scale anisotropy.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3