The ‘sliced-cylinder’ laboratory model of the wind-driven ocean circulation. Part 1. Steady forcing and topographic Rossby wave instability

Author:

Beardsley R. C.,Robbins K.

Abstract

The nonlinear response of the ‘sliced-cylinder’ laboratory model for the wind-driven ocean circulation is re-examined here in part 1 for the case of strong steady forcing. Introduced by Pedlosky & Greenspan (1967), the model consists of a rapidly rotating right cylinder with a planar sloping bottom. The homogeneous contained fluid is driven by the slow rotation of the flat upper lid relative to the rest of the basin. Except in thin Ekman and Stewartson boundary layers on the solid surfaces of the basin, the horizontal flow in the interior and western boundary layer is constrained by the rapid rotation of the basin to be independent of depth. The model thus effectively simulates geophysical flows through the physical analogy between topographic vortex stretching in the laboratory model and the creation of relative vorticity in planetary flows by the β effect.As the forcing is increased, the flow in both the sliced-cylinder laboratory and numerical models first exhibits downstream intensification in the western boundary layer. At greater forcing, separation of the western boundary current occurs with the development of stationary topographic Rossby waves in the western boundary-layer transition regions. The observed flow ultimately becomes unstable when a critical Ekman-layer Reynolds number is exceeded. We first review and compare the experimental and numerical descriptions of this low-frequency instability, then present a simple theoretical model which successfully explains this observed instability in terms of thelocalbreakdown of the finite-amplitude topographic Rossby waves embedded in the western boundary current transition region. The inviscid stability analysis of Lorenz (1972) is extended to include viscous effects, with the consequence that dissipative processes in the sliced-cylinder problem (i.e. lateral and bottom friction) are shown to inhibit the onset of the instability until the topographic Rossby wave slope exceeds a finite critical value.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3