The effect of confinement on the motion of a single clean bubble

Author:

FIGUEROA-ESPINOZA B.,ZENIT R.,LEGENDRE D.

Abstract

The effect of confining a gas bubble between two parallel walls was investigated for the inertia-dominated regime characterized by high Reynolds and low Weber numbers. Single bubble experiments were performed with non-polar liquids such that the bubble surface could be considered clean; hence, shear free. The drag coefficient was found to be the result of two main effects: the Reynolds number and the confinement. The total drag could be written as the product of the corresponding unconfined drag, which depended mainly on the Reynolds number, and a function F(s)=1 + κs3. The confinement parameter s was defined as the ratio of the bubble radius to the gap width. The value of the constant κ depended on the way in which the bubbles moved within the gap, which was found to be either in a rectilinear (κ≈8) or oscillatory trajectory (κ≈80). For Re < 70, and a range of values of the confinement parameter, the bubbles followed a rectilinear path. For this regime, numerical simulations were performed to obtain the drag force on the bubble directly; a reasonable agreement was found with experiments. Moreover, a comparison of these results with a potential-flow-based model indicated that the vorticity produced at the walls induced a significant part of the drag. For Re > 70, oscillations were observed in the bubble trajectory. In all cases, the oscillation occurred in a zigzag manner. Near the transition the bubbles oscillated but did not reach the walls; for larger Reynolds numbers, the bubbles collided repeatedly with the walls as they ascended. The instability, which is different from the well-known unconfined path instability, resulted from the reversal of sign of the wall-induced lift force: for low Reynolds number, the walls have a stabilizing effect because of the repulsive nature of the lift force between the walls and the bubble, while for high Reynolds number the lift is attractive and trajectories become unstable. Considering a model for the lift force of a bubble moving near a wall, the conditions for the transition were identified. A reasonable agreement between the model and experiments was found.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3