The onset of meandering in a barotropic jet

Author:

BALMFORTH N. J.,PICCOLO C.

Abstract

This study explores the dynamics of an unstable jet of two-dimensional, incompressible fluid on the beta-plane. In the inviscid limit, standard weakly nonlinear theory fails to give a low-order description of this problem, partly because the simple shape of the unstable normal mode is insufficient to capture the structure of the forming pattern. That pattern takes the form of ‘cat's eyes’ in the vorticity distribution which develop inside the modal critical layers (slender regions to either side of the jet's axis surrounding the levels where the modal wave speed matches the mean flow). Asymptotic expansions furnish a reduced model which is a version of what is known as the single-wave model in plasma physics. The reduced model predicts that the amplitude of the unstable mode saturates at a relatively low level and is not steady. Rather, the amplitude evolves aperiodically about the saturation level, a result with implications for Lagrangian transport theories. The aperiodic amplitude ‘bounces’ are intimately connected with sporadic deformations of the vortices within the cat's eyes. The theory is compared with numerical simulations of the original governing equations. Slightly asymmetrical jets are also studied. In this case the neutral modes along the stability boundary become singular; an extension of the weakly nonlinear theory is presented for these modes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theory of phase-space hydrodynamics of electron and ion holes in collisionless plasmas;Physics of Plasmas;2024-09-01

2. The Number of Traveling Wave Families in a Running Water with Coriolis Force;Archive for Rational Mechanics and Analysis;2022-09-26

3. Nonlinear dynamics of forced baroclinic critical layers II;Journal of Fluid Mechanics;2021-04-30

4. Linear Inviscid Damping for the $$\beta $$-Plane Equation;Communications in Mathematical Physics;2020-03-14

5. Barotropic instability of shear flows;Studies in Applied Mathematics;2020-02-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3