Large-eddy simulation of a three-dimensional shear-driven turbulent boundary layer

Author:

KANNEPALLI CHANDRASEKHAR,PIOMELLI UGO

Abstract

A three-dimensional shear-driven turbulent boundary layer over a flat plate generated by moving a section of the wall in the transverse direction is studied using large-eddy simulations. The configuration is analogous to shear-driven boundary layer experiments on spinning cylinders, except for the absence of curvature effects. The data presented include the time-averaged mean flow, the Reynolds stresses and their budgets, and instantaneous flow visualizations. The near-wall behaviour of the flow, which was not accessible to previous experimental studies, is investigated in detail. The transverse mean velocity profile develops like a Stokes layer, only weakly coupled to the streamwise flow, and is self-similar when scaled with the transverse wall velocity, Ws. The axial skin friction and the turbulent kinetic energy, K, are significantly reduced after the imposition of the transverse shear, due to the disruption of the streaky structures and of the outer-layer vortical structures. The turbulent kinetic energy budget reveals that the decrease in production is responsible for the reduction of K. The flow then adjusts to the perturbation, reaching a quasi-equilibrium three-dimensional collateral state. Following the cessation of the transverse motion, similar phenomena take place again. The flow eventually relaxes back to a two-dimensional equilibrium boundary layer.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3