Dynamics of axisymmetric bodies rising along a zigzag path

Author:

FERNANDES PEDRO C.,ERN PATRICIA,RISSO FRÉDÉRIC,MAGNAUDET JACQUES

Abstract

The forces and torques governing the planar zigzag motion of thick, slightly buoyant disks rising freely in a liquid at rest are determined by applying the generalized Kirchhoff equations to experimental measurements of the body motion performed for a single body-to-fluid density ratio ρsf ≈ 1. The evolution of the amplitude and phase of the various contributions is discussed as a function of the two control parameters, i.e. the body aspect ratio (the diameter-to-thickness ratio χ = d/h ranges from 2 to 10) and the Reynolds number (100 < Re < 330), Re being based on the rise velocity and diameter of the body. The body oscillatory behaviour is found to be governed by the force balance along the transverse direction and the torque balance. In the transverse direction, the wake-induced force is mainly balanced by two forces that depend on the body inclination, i.e. the inertia force generated by the body rotation and the transverse component of the buoyancy force. The torque balance is dominated by the wake-induced torque and the restoring added-mass torque generated by the transverse velocity component. The results show a major influence of the aspect ratio on the relative magnitude and phase of the various contributions to the hydrodynamic loads. The vortical transverse force scales as fo = (ρf − ρs)ghπd2 whereas the vortical torque involves two contributions, one scaling as fod and the other as f1d with f1 = χfo. Using this normalization, the amplitudes and phases of the vortical loads are made independent of the aspect ratio, the amplitudes evolving as (Re/Rec1 − 1)1/2, where Rec1 is the threshold of the first instability of the wake behind the corresponding body held fixed in a uniform stream.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3