Particle encapsulation due to thread breakup in Stokes flow

Author:

BLYTH M. G.,POZRIKIDIS C.

Abstract

The capillary instability of a liquid thread containing a regular array of spherical particles along the centreline is considered with reference to microencapsulation. The thread interface may be clean or occupied by an insoluble surfactant. The main goal of the analysis is to illustrate the effect of the particle spacing on the growth rate of axisymmetric perturbations and identify the structure of the most unstable modes. A normal-mode linear stability analysis based on Fourier expansions for Stokes flow reveals that, at small particle separations, the interfacial profiles are nearly pure sinusoidal waves whose growth rate is nearly equal to that of a pure thread devoid of particles. Higher harmonics suddenly enter the normal modes for moderate and large particle separations, elevating the growth rates and yielding a stability diagram that consists of a sequence of superposed pure-thread lobes. A complementary numerical stability analysis based on the boundary integral formulation for Stokes flow reveals the strong stabilizing effect of particles whose radius is comparable to the thread radius. Numerical simulations of the finite-amplitude motion based on the boundary integral method demonstrate that thread breakup leads to particles coated with annular layers of different thicknesses.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3