Noise generation by high-frequency gusts interacting with an airfoil in transonic flow

Author:

EVERS I.,PEAKE N.

Abstract

The method of matched asymptotic expansions is used to describe the sound generated by the interaction between a short-wavelength gust (reduced frequency k, with k [Gt ] 1) and an airfoil with small but non-zero thickness, camber and angle of attack (which are all assumed to be of typical size O(δ), with δ [Lt ] 1) in transonic flow. The mean-flow Mach number is taken to differ from unity by O2/3), so that the steady flow past the airfoil is determined using the transonic small-disturbance equation. The unsteady analysis is based on a linearization of the Euler equations about the mean flow. High-frequency incident vortical and entropic disturbances are considered, and analogous to the subsonic counterpart of this problem, asymptotic regions around the airfoil highlight the mechanisms that produce sound. Notably, the inner region round the leading edge is of size O(k−1), and describes the interaction between the mean-flow gradients and the incident gust and the resulting acoustic waves. We consider the preferred limit in which kδ2/3 = O(1), and calculate the first two terms in the phase of the far-field radiation, while for the directivity we determine the first term (δ = 0), together with all higher-order terms which are at most O2/3) smaller – in fact, this involves no fewer than ten terms, due to the slowly-decaying form of the power series expansion of the steady flow about the leading edge. Particular to transonic flow is the locally subsonic or supersonic region that accounts for the transition between the acoustic field downstream of a source and the possible acoustic field upstream of the source. In the outer region the sound propagation has a geometric-acoustics form and the primary influence of the mean-flow distortion appears in our preferred limit as an O(1) phase term, which is particularly significant in view of the complicated interference between leading- and trailing-edge fields. It is argued that weak mean- flow shocks have an influence on the sound generation that is small relative to the effects of the leading-edge singularity.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3