The non-Newtonian rheology of dilute colloidal suspensions

Author:

BERGENHOLTZ J.,BRADY J. F.,VICIC M.

Abstract

The non-Newtonian rheology is calculated numerically to second order in the volume fraction in steady simple shear flows for Brownian hard spheres in the presence of hydrodynamic and excluded volume interactions. Previous analytical and numerical results for the low-shear structure and rheology are confirmed, demonstrating that the viscosity shear thins proportional to Pe2, where Pe is the dimensionless shear rate or Péclet number, owing to the decreasing contribution of Brownian forces to the viscosity. In the large Pe limit, remnants of Brownian diffusion balance convection in a boundary-layer in the compressive region of the flow. In consequence, the viscosity shear thickens when this boundary-layer coincides with the near-contact lubrication regime of the hydrodynamic interaction. Wakes are formed at large Pe in the extensional zone downstream from the reference particle, leading to broken symmetry in the pair correlation function. As a result of this asymmetry and that in the boundary-layer, finite normal stress differences are obtained as well as positive departures in the generalized osmotic pressure from its equilibrium value. The first normal stress difference changes from positive to negative values as Pe is increased when the hard-sphere limit is approached. This unusual effect is caused by the hydrodynamic lubrication forces that maintain particles in close proximity well into the extensional quadrant of the flow. The study demonstrates that many of the non-Newtonian effects observed in concentrated suspensions by experiments and by Stokesian dynamics simulations are present also in dilute suspensions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3