A high-order moment approach for capturing non-equilibrium phenomena in the transition regime

Author:

GU XIAO-JUN,EMERSON DAVID R.

Abstract

The method of moments is employed to extend the validity of continuum-hydrodynamic models into the transition-flow regime. An evaluation of the regularized 13 moment equations for two confined flow problems, planar Couette and Poiseuille flows, indicates some important limitations. For planar Couette flow at a Knudsen number of 0.25, they fail to reproduce the Knudsen-layer velocity profile observed using a direct simulation Monte Carlo approach, and the higher-order moments are not captured particularly well. Moreover, for Poiseuille flow, this system of equations creates a large slip velocity leading to significant overprediction of the mass flow rate for Knudsen numbers above 0.4. To overcome some of these difficulties, the theory of regularized moment equations is extended to 26 moment equations. This new set of equations highlights the importance of both gradient and non-gradient transport mechanisms and is shown to overcome many of the limitations observed in the regularized 13 moment equations. In particular, for planar Couette flow, they can successfully capture the observed Knudsen-layer velocity profile well into the transition regime. Moreover, this new set of equations can correctly predict the Knudsen layer, the velocity profile and the mass flow rate of pressure-driven Poiseuille flow for Knudsen numbers up to 1.0 and captures the bimodal temperature profile in force-driven Poiseuille flow. Above this value, the 26 moment equations are not able to accurately capture the velocity profile in the centre of the channel. However, they are able to capture the basic trends and successfully predict a Knudsen minimum at the correct value of the Knudsen number.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 188 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3