Differential diffusion of high-Schmidt-number passive scalars in a turbulent jet

Author:

LAVERTU T. M.,MYDLARSKI L.,GASKIN S. J.

Abstract

The separate evolution, or differential diffusion, of high-Schmidt-number passive scalars in a turbulent jet is studied experimentally. The two scalars under consideration are disodium fluorescein (Sc≡ ν/D= 2000) and sulforhodamine 101 (Sc= 5000). The objectives of the research are twofold: to determine (i) the Reynolds-number-dependence, and (ii) the radial distribution of differential diffusion effects in the self-similar region of the jet. Punctual laser-induced fluorescence (LIF) measurements were obtained 50 jet diameters downstream of the nozzle exit for five Reynolds numbers (Reuod/ν = 900, 2100, 4300, 6700 and 10600, whereu0is the jet exit velocity,dis the jet diameter, and ν is the kinematic viscosity) and for radial positions extending from the centreline to the edges of the jet cross-section (0 ≤r/d≤ 7.5). Statistics of the normalized concentration difference,Z, were used to quantify the differential diffusion. The latter were found to decay slowly with increasing Reynolds number, with the root mean square ofZscaling asZrms≡ 〈Z21/2Re−0.1, (or alternatively 〈Z2〉 ∝Re−0.2). Regardless of Reynolds number, differential diffusion effects were found to increase away from the centreline. The increase in differential diffusion effects with radial position, along with their increase with decreasing Reynolds number, support the hypothesis of increased differential diffusion at interfaces between the jet and ambient fluids. Power spectral densities ofZwere also studied. These spectra decreased with increasing wavenumber – an observation attributed to the decay of the scalar fluctuations in a turbulent jet. Furthermore, these spectra showed that significant differential diffusion effects persist at scales larger than the Kolmogorov scale, even for moderately high Reynolds numbers.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3