Unsteady aerodynamics of dragonfly using a simple wing–wing model from the perspective of a force decomposition

Author:

HSIEH CHENG-TA,KUNG CHUN-FEI,CHANG CHIEN C.,CHU CHIN-CHOU

Abstract

Insects perform their multitude of flight skills at frequencies of tens to hundreds of Hertz, and the aerodynamics of these skills are fundamentally unsteady. Intuitively, unsteadiness may come from unsteady wing motion, unsteady surface vorticity or vorticity being shed into the rear and front wakes. In this study, we propose to investigate the aerodynamics of dragonfly using a simplified wing–wing model from the perspective of many-body force decomposition and the associated force elements. Insect flight usually operates at Reynolds numbers of the order of several hundreds, at which the surface vorticity is shown to play a substantial role. There are important cases where the added mass effect is non-negligible. Nevertheless, the major contribution to the forces comes from the vorticity within the flow. This study focused on the effects of mutual interactions due to phase differences between the fore- and hindwings in the translational as well as rotational motions. It is well known that the dynamic stall vortex is an important mechanism for an unsteady wing to gain lift. In analysing the life cycles of lift and thrust elements, we also associate some high lift and thrust with the mechanisms identified as ‘riding on’ lift elements, ‘driven by’ thrust elements and ‘sucked by’ thrust elements, by which a wing makes use of a shed or fused vortex below, in front of, and behind it, respectively. In addition, a shear layer attaching to each wing may also provide significant thrust elements.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Repeatability of Dynamic Stall at Low Reynolds Number;AIAA SCITECH 2024 Forum;2024-01-04

2. Bio-inspired Flapping Wing Aerodynamics: A Review;Journal of the Indian Institute of Science;2024-01

3. Vorticity forces of coherent structures on the NACA0012 aerofoil;Journal of Fluid Mechanics;2023-11-07

4. Vortex force map for incompressible multi-body flows with application to wing–flap configurations;Journal of Fluid Mechanics;2022-12-15

5. Numerical investigation of wing–wing interaction and its effect on the aerodynamic force of a hovering dragonfly;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2021-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3