Polydisperse particle-driven gravity currents

Author:

HARRIS THOMAS C.,HOGG ANDREW J.,HUPPERT HERBERT E.

Abstract

The intrusion of a polydisperse suspension of particles over a horizontal, rigid boundary is investigated theoretically using both an integral (‘box’) model and the shallow-water equations. The flow is driven by the horizontal pressure gradient associated with the density difference between the intrusion and the surrounding fluid, which is progressively diminished as suspended particles sediment from the flow to the underlying boundary. Each class of particles in a polydisperse suspension has a different settling velocity. The effects of both a discrete and continuous distribution of settling velocities on the propagation of the current are analysed and the results are compared in detail with results obtained by treating the suspension as monodisperse with an average settling velocity. For both models we demonstrate that in many regimes it is insufficient to deduce the behaviour of the suspension from this average, but rather one can characterize the flow using the variance of the settling velocity distribution as well. The shallow-water equations are studied analytically using a novel asymptotic technique, which obviates the need for numerical integration of the governing equations. For a bidisperse suspension we explicitly calculate the flow speed, runout length and the distribution of the deposit, to reveal how the flow naturally leads to a vertical and streamwise segregation of particles even from an initially well-mixed suspension. The asymptotic results are confirmed by comparison with numerical integration of the shallow-water equations and the predictions of this study are discussed in the light of recent experimental results and field observations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3