A study of Bénard convection with and without rotation

Author:

Rossby H. T.

Abstract

An experimental study of the response of a thin uniformly heated rotating layer of fluid is presented. It is shown that the stability of the fluid depends strongly upon the three parameters that described its state, namely the Rayleigh number, the Taylor number and the Prandtl number. For the two Prandtl numbers considered, 6·8 and 0·025 corresponding to water and mercury, linear theory is insufficient to fully describe their stability properties. For water, subcritical instability will occur for all Taylor numbers greater than 5 × 104, whereas mercury exhibits a subcritical instability only for finite Taylor numbers less than 105. At all other Taylor numbers there is good agreement between linear theory and experiment.The heat flux in these two fluids has been measured over a wide range of Rayleigh and Taylor numbers. Generally, much higher Nusselt numbers are found with water than with mercury. In water, at any Rayleigh number greater than 104, it is found that the Nusselt number will increase by about 10% as the Taylor number is increased from zero to a certain value, which depends on the Rayleigh number. It is suggested that this increase in the heat flux results from a perturbation of the velocity boundary layer with an ‘Ekman-layer-like’ profile in such a way that the scale of boundary layer is reduced. In mercury, on the other hand, the heat flux decreases monotonically with increasing Taylor number. Over a range of Rayleigh numbers (at large Taylor numbers) oscillatory convection is preferred although it is inefficient at transporting heat. Above a certain Rayleigh number, less than the critical value for steady convection according to linear theory, the heat flux increases more rapidly and the convection becomes increasingly irregular as is shown by the temperature fluctuations at a point in the fluid.Photographs of the convective flow in a silicone oil (Prandtl number = 100) at various rotation rates are shown. From these a rough estimate is obtained of the dominant horizontal convective scale as a function of the Rayleigh and Taylor numbers.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 559 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3