Simulation of normal vortex–cylinder interaction in a viscous fluid

Author:

GOSSLER A. A.,MARSHALL J. S.

Abstract

A computational study of three-dimensional vortex–cylinder interaction is reported for the case where the nominal orientation of the cylinder axis is normal to the vortex axis. The computations are performed using a new tetrahedral vorticity element method for incompressible viscous fluids, in which vorticity is interpolated using a tetrahedral mesh that is refit to the Lagrangian computational points at each timestep. Fast computation of the Biot-Savart integral for velocity is performed using a box-point multipole acceleration method for distant tetrahedra and Gaussian quadratures for nearby tetrahedra. A moving least-square method is used for differentiation, and a flux-based vorticity boundary condition algorithm is employed for satisfaction of the no-slip condition. The velocity induced by the primary vortex is obtained using a filament model and the Navier–Stokes computations focus on development of boundary-layer separation from the cylinder and the form and dynamics of the ejected secondary vorticity structure. As the secondary vorticity is drawn outward by the vortex-induced flow and wraps around the vortex, it has a substantial effect both on the essentially inviscid flow field external to the boundary layer and on the cylinder surface pressure field. Cases are examined with background free-stream velocity oriented in the positive and negative directions along the cylinder axis, with free-stream velocity normal to the cylinder axis, and with no free-stream velocity. Computations with no free-stream velocity and those with free-stream velocity tangent to the cylinder axis exhibit similar secondary vorticity structures, consisting of a vortex loop (or hairpin) that wraps around the primary vortex and is attached to the cylinder boundary layer at two points. Computations with free-stream velocity oriented normal to the cylinder axis exhibit secondary vorticity structure of a markedly different character, in which the secondary eddy remains close to the cylinder boundary and has a quasi-two-dimensional form for an extended time period.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3